observed dark color of the crystals may indicate some transfer of charge. The r.m.s. deviation of C atoms from the plane of the anthracene ring system is 0.003 (1) \AA, while for the dianhydride it is $0.027 \AA$. Atoms $\mathrm{O}(12), \mathrm{O}(13), \mathrm{C}(13)$ and $\mathrm{C}(16)$ deviate most from the plane.

This work was supported by grant $\mathrm{CN}-10$ from the American Cancer Society, Grants CA-10925, CA-06927 and RR-05539 from the National Institutes of Health, and by an appropriation from the Commonwealth of Pennsylvania. One of us (HH) was supported by a grant from the Bundesministerium für Forschung und Technologie (Project A10U of the Zentrale Schwerpunktprojekt Bioverfahrenstechnik, Stuttgart).

References

Carrell, H. L. (1976). VIEW. Institute for Cancer Research, The Fox Chase Cancer Center, Philadelphia, PA 19111, USA.

Carrell, H. L., Shieh, H.-S. \& Takusagawa, F. (1981). The Crystallographic Program Library of the Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
Davies, E. K. (1983). The CHEMGRAF suite. Oxford Univ. Computing Laboratory, Oxford, England.
Foster, R. (1969). Organic Charge Transfer Complexes. London: Academic Press.
Foster, R., Iball, J., Scrimgeour, S. N. \& Williams, B. C. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 682-685.

Herbstein, F. H. (1971). Perspectives in Structural Chemistry, edited by J. D. Dunitz \& J. A. Ibers, pp. 166-395. New York: Wiley.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Jones, T. A. (1978). J. Appl. Cryst. 11, 268-272.
Mayoh, B. \& Prout, C. K. (1972). J. Chem. Soc. Faraday Trans. 2, 68, pp. 1072-1082.
Munnoch, P. J. \& Wright, J. D. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 1397-1400.
Munnoch, P. J. \& Wright, J. D. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 1071-1074.
Prout, C. K. \& Wright, J. D. (1968). Angew. Chem. Int. Ed. Engl. 7, 659-667.

Acta Cryst. (1993). C49, 526-528

Structure of 4-(5-Cyano-2-furyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarbonitrile

By Jozef Kožíšek
Department of Inorganic Chemistry, Faculty of Chemical Technology, Radlinského 9, Slovak Technical University, CS - 81237 Bratislava, Czechoslovakia
Helmut Paulus
Institut für Physikalische Chemie, Fachgebiet Strukturforschung, Technical University Darmstadt, Petersenstrasse 15, D-6100 Darmstadt, Germany
and Štefan Marchalín and Dušan Ilavský
Department of Organic Chemistry, Faculty of Chemical Technology, Radlinského 9, Slovak Technical University, CS - 81237 Bratislava, Czechoslovakia

(Received 10 December 1991; accepted 13 October 1992)

Abstract

C}_{14} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}, \quad M_{r}=250.26\), monoclinic, $P 2_{1} / c, a=13.293$ (3), $b=8.099$ (2), $c=13.815$ (3) \AA, $\beta=120.474$ (5) ${ }^{\circ}, \quad V=1281.9(5) \AA^{3}, \quad Z=4, \quad D_{m}=$ 1.26 (2), $\quad D_{x}=1.297 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \alpha)=$ $0.71069 \AA, \quad \mu=0.08 \mathrm{~mm}^{-1}, \quad F(000)=520, \quad T=$ 299 K , final $R=0.0442$ for 2081 unique reflections with $F>2 \sigma(F)$. The crystal structure consists of single molecules. The substituted 1,4-dihydropyridine ring has a flat boat conformation with the $\mathrm{N}(1)$ and $\mathrm{C}(4)$ atoms displaced by 0.100 (1) and 0.141 (1) \AA, respectively, from the plane through the other four C atoms which defines the base of the boat. The plane of the furyl ring makes an angle of 76.7 (1) ${ }^{\circ}$ with the

plane of the base of the boat. No significant intermolecular interactions are observed.

Introduction. Numerous newly synthesized 1,4dihydropyridines have been studied as models of NADH coenzymes in 'hydrogen-transfer' reactions (Eisner \& Kuthan, 1972). In order for a 1,4dihydropyridine to act as a reducing agent, the H atom in the 4-position $[\mathrm{H}(3)]$ and that at the N atom should assume an antiperiplanar arrangement.

X-ray studies on 1,4-dihydropyridines have shown a great dependence of the geometry of the skeleton on the attached substituents, especially those in the 4
position. Thus, (I) has a planar structure (Lenstra, Petit, Dommisse \& Alderweireldt, 1979), (II) has a boat conformation (Fossheim, Svarteng, Mostad, Roemming, Shefter \& Triggle, 1982) while (III) is a half-boat (Huml, Ječný, Kutschabsky \& Reck, 1979).

We have studied the crystal structure of 4-(5-cyano-2-furyl)-2,6-dimethyl-1,4-dihydropyridine-3,5dicarbonitrile (IV) prepared by a modified Hantzsch procedure starting from 5 -formyl-2-furancarbonitrile and 3-amino-2-butenenitrile (Ilavský, Marchalín, Kováč, Henry-Basch \& Morvan, 1987).

Experimental. A colourless well shaped crystal of dimensions $0.35 \times 0.48 \times 0.55 \mathrm{~mm}$ was used. D_{m} was measured by flotation. Accurate unit-cell parameters were obtained by a least-squares fit of 42 reflections ($41.1<2 \theta<48.0^{\circ}$). The intensities were recorded on a Stoe-Siemens AED diffractometer for $3<2 \theta<50^{\circ}$ using graphite-monochromated Mo $K \alpha$ radiation and $\omega / 2 \theta$ scan mode. Index range was $h 0 / 15, k$ $-9 / 4, l-16 / 14$. Three standard reflections (020, $32 \overline{3}, 3 \overline{2} 3$) were measured every 90 min ; no significant systematic fluctuation was found. 3621 reflections were measured, 2250 unique, of which 2082 with F_{o} $>2 \sigma\left(F_{o}\right)$ were considered observed; $R_{\text {int }}=0.0105$ for 1184 unique reflections. The structure was solved by direct methods using SIR88 (Burla, Camalli, Cascarano, Giacovazzo, Polidori, Spagna \& Viterbo, 1989) and refined on F by least squares with $S H E L X 76$ (Sheldrick, 1976). A difference map of the partially refined structure gave the positions of all H atoms. Refinement continued on all 213 positional and thermal parameters, anisotropic for non- H atoms and isotropic for H atoms. In the final cycle, $R=0.0442$ and $w R=0.0357$ for 2081 observed reflections (one of the strongest reflections, 310 , was considered to suffer from extinction and was excluded from the refinement), $w^{-1}=k \sigma^{2}(F), k=3.1868 ; \max . \Delta / \sigma=$ 0.056 ; max. and min. heights in the final $\Delta \rho$ map 0.059 and -0.066 e \AA^{-3}. No absorption correction was applied. Secondary-extinction correction refined

Table 1. Final atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{3}\right)$ with e.s.d.'s in parentheses
U_{cq} is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

	x	y	z	$U_{\text {eq }}$
O(1)	6760 (1)	618 (2)	6532 (1)	494 (6)
C(1)	5744 (2)	1446 (3)	6249 (2)	555 (10)
C(2)	5455 (2)	2460 (3)	5387 (2)	729 (12)
C(3)	6335 (2)	2274 (3)	5097 (2)	659 (10)
C(4)	7106 (1)	1164 (2)	5806 (1)	432 (8)
C(5)	5236 (2)	1079 (3)	6919 (2)	666 (11)
C(6)	8200 (1)	398 (2)	5955 (1)	412 (8)
C(7)	8692 (1)	1405 (2)	5362 (1)	416 (8)
C(8)	8540 (1)	964 (2)	4355 (1)	411 (9)
C (9)	7856 (1)	-1728 (2)	4490 (1)	411 (9)
$\mathrm{C}(10)$	7979 (1)	-1353 (2)	5498 (1)	397 (7)
C(11)	7836 (2)	-2600 (2)	6143 (1)	480 (9)
C(12)	7550 (2)	-3394 (3)	3958 (2)	567 (12)
C(13)	8899 (2)	1979 (3)	3678 (2)	552 (11)
C (14)	8301 (2)	2893 (2)	5892 (1)	506 (9)
$\mathrm{N}(1)$	8052 (1)	- 530 (2)	3902 (1)	453 (8)
N(2)	4848 (2)	786 (3)	7468 (1)	916 (12)
N(3)	9796 (2)	4070 (2)	6336 (1)	734 (9)
N(4)	7709 (2)	-3558 (2)	6680 (1)	688 (10)

to $1.12(2) \times 10^{-6}\left[F_{c}\right.$ multiplied by $\left.\left(1-x F_{c}^{2}\right) \sin \theta\right]$. The scattering factors for neutral atoms were taken from International Tables for X-ray Crystallography (1974, Vol. IV). No significant correlations among refined parameters were observed.

Discussion. Final atomic coordinates and equivalent isotropic temperature factors are given in Table 1* and bond lengths and angles (Nardelli, 1983) in Table 2. The molecular structure with atom numbering is shown in Fig. 1 (ORTEPII; Johnson, 1971).

The structure is formed by single molecules linked via hydrogen bonds (Table 2). The furyl ring is planar within experimental error. The dihydropyridine ring adopts a flattened boat conformation. The $\mathrm{C}(6), \mathrm{C}(7), \mathrm{C}(10)$ plane makes an angle of 17.9 (1) ${ }^{\circ}$ with the $C(7), C(8), C(9), C(10)$ plane, and the $\mathrm{C}(8), \mathrm{N}(1), \mathrm{C}(9)$ plane forms an angle of 171.3 (1) ${ }^{\circ}$ with the $C(7), C(8), C(9), C(10)$ plane. The furyl ring plane forms an angle of $76.7(1)^{\circ}$ with plane $C(7), C(8), C(9), C(10)$, thus confirming the $\boldsymbol{\sigma}-\pi$ interaction of the p orbitals of 1,4-dihydropyridine and the σ bond $\mathrm{C}(6)\left(s p^{3}\right)-\mathrm{C}(4)\left(s p^{2}\right)$. The interaction also manifests itself through the significant bathochromic shift of the longest-wavelength UV maximum. Bond distances and valence angles are normal. The 1,4-dihydropyridine cyano groups are equivalent and are involved in hydrogen bonds

[^0]Table 2. Selected interatomic distances (\AA), angles $\left({ }^{\circ}\right)$ and hydrogen bonds $\left(\AA,{ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{O}(1)-\mathrm{C}(1)$	1.3751 (30)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.3486 (21)
$\mathrm{O}(1)-\mathrm{C}(4)$	1.3715 (23)	$\mathrm{C}(7)-\mathrm{C}(14)$	1.4292 (22)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.3327 (37)	$\mathrm{C}(8)-\mathrm{C}(13)$	1.4936 (35)
$\mathrm{C}(1)-\mathrm{C}(5)$	1.4266 (47)	$\mathrm{C}(8)-\mathrm{N}(1)$	1.3656 (21)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.4237 (46)	$\mathrm{C}(9)-\mathrm{C}(10) \quad 1$	1.3518 (21)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.3416 (25)	$\mathrm{C}(9)-\mathrm{C}(12) \quad 1$	1.4910 (29)
$\mathrm{C}(4)-\mathrm{C}(6)$	1.4962 (21)	$\mathrm{C}(9)-\mathrm{N}(1) \quad 1$	1.3725 (23)
$\mathrm{C}(5)-\mathrm{N}(2)$	1.1377 (41)	$\mathrm{C}(10)-\mathrm{C}(11) \quad 1$	1.4219 (25)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.5190 (23)	$\mathrm{C}(11)-\mathrm{N}(4) \quad 1$	1.1436 (28)
$\mathrm{C}(6)-\mathrm{C}(10)$	1.5192 (23)	$\mathrm{C}(14)-\mathrm{N}(3) \quad 1$	1.1439 (23)
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(4)$	106.3 (2)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	122.3 (1)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	115.7 (2)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(14)$	120.1 (1)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	110.6 (3)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(1)$	119.7 (1)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)$	133.7 (3)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(13)$	124.9 (2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	106.3 (2)	$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{N}(1)$	115.4 (1)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	107.3 (2)	$\mathrm{C}(12)-\mathrm{C}(9)-\mathrm{N}(1)$	115.7 (2)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	109.6 (2)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{N}(1)$	119.4 (1)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(6)$	135.1 (2)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(12)$	124.9 (2)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(6)$	115.4 (1)	$\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{C}(9)$	122.3 (1)
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{N}(2)$	178.9 (3)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$) 120.1 (1)
$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{C}(10)$	111.1 (1)	$\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{C}(11)$	117.5 (1)
$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{C}(7)$	111.0 (1)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(4)$) 177.4 (2)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(10)$	108.8 (1)	$\mathrm{C}(7)-\mathrm{C}(14)-\mathrm{N}(3)$	178.7 (1)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(14)$	117.6 (1)	$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(9)$	122.9 (1)
$D-\mathrm{H} \cdots A$	$D \cdots A$	$\mathrm{H} \cdots A \quad D$	$D-\mathrm{H} \cdots A$
$\mathrm{N}(1)-\mathrm{H}(4) \cdots \mathrm{N}\left(4^{\text {i }}\right.$)	2.959 (2)	2.10 (2) 17	77 (2)
$\mathrm{C}(13)-\mathrm{H}(8) \cdots \mathrm{O}\left(1^{\text {i }}\right.$)	3.480 (2)	2.72 (2) 13	38 (2)
$\mathrm{C}(6)-\mathrm{H}(3) \cdots \mathrm{N}\left(3^{\text {iii }}\right)$	3.485 (2)	2.57 (1) 15	58 (1)

Symmetry code: (i) $x,-\frac{1}{2}-y,-\frac{1}{2}+z$; (ii) $x, \frac{1}{2}-y,-\frac{1}{2}+z$; (iii) $2-x,-\frac{1}{2}+y, \frac{3}{2}-z$.
(Table 2). Double-bond lengths in the furyl ring differ very slightly $[\mathrm{C}(1)=\mathrm{C}(2)=1.333$ (4) and $\mathrm{C}(3)=\mathrm{C}(4)=1.342(3) \AA]$ owing to the conjugation in the $\mathrm{N}(2)(s p)-\mathrm{C}(5)(s p)-\mathrm{C}(1)\left(s p^{2}\right)-\mathrm{C}(2)\left(s p^{2}\right)-$ $\mathrm{C}(3)\left(s p^{2}\right)-\mathrm{C}(4)\left(s p^{2}\right)$ unit. The replacement of 4 methylpyridine in position 5 of the furan ring (Lokaj, Vrábel, Sivý, Kettmann, Ilavský \& Ječný, 1991) by the cyano group has resulted in increased conjugation, leading to a decrease in the $\mathrm{C}(2)-\mathrm{C}(3)$ bond length from 1.441 (3) to 1.424 (5) \AA.

Atomic thermal motion increases significantly with distance from the molecular centre. The $U_{\text {eq }}$ values range from $<0.042 \AA^{2}$ for dihydropyridine to

Fig. 1. The molecular structure of the title compound showing the atom numbering.
$0.073 \AA^{2}$ in the furyl ring and up to $0.092(1) \AA^{2}$ for the outer $\mathrm{N}(2)$ atom. The ratio of the shortest to longest principal axis increases likewise, with a maximum asymmetry of 2.98 for $\mathrm{N}(4)$.

References

Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. \& Viterbo, D. (1989). J. Appl. Cryst. 22, 389-393.
Eisner, U. \& Kuthan, J. (1972). Chem. Rev. 72, 1-42.
Fosshem, R., Svarteng, K., Mostad, A., Roemming, C., Shefter, E. \& Triggle, D. J. (1982). J. Med. Chem. 25, 126-131.
Huml, K., JeČný, J., Kutschabsky, L. \& Reck, G. (1979). Acta Cryst. B35, 444-447.
Ilavský, D., Marchalín, S., Kováć, J., Henry-Basch, E. \& Morvan, C. (1987). Chem. Papers, 41, 793-801.
Johnson, C. K. (1971). ORTEPII. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee, USA.
lenstra, A. T. H., Petti, G. H., Dommisse, R. A. \& Alderweireldt, F. C. (1979). Bull. Soc. Chim. Belg. 88, 133-141.
lokaj, J., Vrábel, V., Sivý, P., Kettmann, V., Ilavský, D. \& JeČń̛, J. (1991). Acta Cryst. C47, 886-888.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1993). C49, 528-530

Structure of 12b-Hydroxy-5-methyl-1,2,3,4,4a,5,6,12b-octahydro-12Hbenzo[a] xanthen-12-one

By Roy M. Letcher,* Kung-Kai Cheung* and Tai-Yuen Yue
Department of Chemistry, University of Hong Kong, Bonham Road, Hong Kong

(Received 15 May 1992; accepted 26 August 1992)

Abstract. $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3}, \quad M_{r}=284.35, \quad$ triclinic, $\quad P \overline{1}$,
$a=7.505(2), \quad b=8.805(2), \quad c=11.443(4) \AA, \quad \alpha=$

* Authors to whom correspondence should be addressed.
101.53 (3),$\quad \beta=99.57$ (3), $\quad \gamma=95.43$ (2) ${ }^{\circ}, \quad V=$ 724.3 (9) $\AA^{3}, \quad Z=2, \quad D_{x}=1.299 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)$ $=0.71073 \AA, \quad \mu=0.816 \mathrm{~cm}^{-1}, \quad F(000)=304, \quad T=$ $296 \mathrm{~K}, R=0.045$ for 1900 independent reflections.

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55732 (16 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England. [CIF reference: MU0297]

